PH.D IN BIOENGINEERING

Requirements
Intra-University in Colleges of Health and Human Sciences, Engineering, Natural Sciences, Veterinary Medicine and Biomedical Sciences

Effective Fall 2021

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Course Requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOM 533/CIVE 533</td>
<td>Biomolecular Tools for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>BIOM 570/MECH 570</td>
<td>Bioengineering</td>
<td>3</td>
</tr>
<tr>
<td>BIOM 576/MECH 576</td>
<td>Quantitative Systems Physiology</td>
<td>4</td>
</tr>
<tr>
<td>BIOM 592</td>
<td>Seminar 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOM 799</td>
<td>Dissertation</td>
</tr>
</tbody>
</table>

Select three credits from the following:
- MATH 530 Mathematics for Scientists and Engineers
- MATH 535 Foundations of Applied Mathematics
- MATH 545 Partial Differential Equations I
- MATH 550/ENGR 550 Numerical Methods in Science and Engineering
- MATH 560 Linear Algebra
- MATH 569A Linear Algebra for Data Science: Matrices and Vectors Spaces
- MATH 569B Linear Algebra for Data Science: Geometric Techniques for Data Reduction
- MATH 569C Linear Algebra for Data Science: Matrix Factorizations and Transformations
- MATH 569D Linear Algebra for Data Science: Theoretical Foundations

Select four credits from the following:
- STAR 501 Data Wrangling/Visualization for Researchers
- STAR 502 Multivariate Analysis for Researchers
- STAR 512 Design and Data Analysis for Researchers II
- STAR 513 Regression Models for Researchers
- STAR 514 Experimental Design/Analysis for Researchers
- STAR 531 Generalized Regression Models for Researchers
- STAR 532 Mixed Models for Researchers
- STAR 534 Machine Learning for Researchers

Electives
- M.S. Earned
- 30
- Electives
- 6-12

Program Total Credits:
- 72

A minimum of 72 credits are required to complete this program.

1 BIOM 592 must be taken in four semesters.
2 Select a minimum of 6 credits of Engineering courses 500-level or above (either as a master’s student or Ph.D. student) with approval of advisor.
3 Program Total Credits must include a minimum of 42 semester credits earned at CSU (while in the graduate program), a minimum of 32 semester credits earned after admission to CSU, and a minimum of 12 semester credits earned after a master’s degree is acceptable with approval from the student’s advisor, the Bioengineering program, and the Graduate School. Completion of the Ph.D. also requires successfully completing a qualifying exam, a preliminary exam, and a dissertation defense.