Cradite

PH.D. IN MATERIALS SCIENCE AND ENGINEERING

Materials Science and Engineering (MSE) research is aimed at educating and training the next generation of thinkers to solve the biggest global challenges.

By fostering a multidisciplinary approach, MSE degree programs strive to endow students with the tools to strategically question current design paradigms and drive innovative materials and manufacturing solutions across a diverse range of sectors. Motivated by modern materials challenges in energy, computing, transportation, impact protection, robotics, and global health care, MSE programs' comprehensive, experiential training is designed to equip graduates with a modernized skill set tailored to confront those challenges head-on.

The MSE Ph.D. degree program is designed to engage students with:

- Active hands-on training in the latest materials characterization and computational methods, materials-focused intellectual property protection and technology transfer, and professional soft skill development.
- Enhanced educational opportunities promoted through industry partnerships, facilitating internships and class time spent in active commercial manufacturing labs.
- A diverse core of faculty mentors driving advances in controlling structure at the nanoscale, predictive property modeling, high performance metal, polymer and ceramic composites, photovoltaics, and additive manufacturing.

The overall objective of the Ph.D. in Materials Science and Engineering is developing science and engineering professionals with multidisciplinary problem solving skills to address global challenges in the field of materials science and engineering.

Students interested in graduate work should refer to the Graduate and Professional Bulletin (http://catalog.colostate.edu/general-catalog/graduate-bulletin/).

Program Learning Objectives

Similar to the Land Grant mission of extension, education, and research, the specific learning objectives for the MSE programs are centered on the following three themes:

- Scholarly engagement and research
- · Educational engagement
- Innovation

Scholarly engagement and research

Students will:

1. Graduate with an understanding of cross-disciplinary materials research in physics, engineering, and chemistry.

Educational engagement

Students will:

- Synthesize and connect knowledge from the different disciplines of materials research to complete course work and research for their degree.
- 2. Communicate their science to a wide range of audiences.

- 3. Understand the life-cycle of materials from design to manufacture.
- Engage in team science where they will work with different faculty and different disciplines to answer important and innovative research questions.

Innovation

Students will:

- 1. Gain experience working in an interdisciplinary research setting to enable them to solve complex real-world problems.
- 2. Graduate with knowledge and skills necessary to assume careers in a wide variety of organizations and industries related to materials.
- 3. Understand how their skills are important in solving global-problems.

Diversity

Code

Students will:

 Gain an appreciation of different disciplines, as well as different approaches to problem solving so they can actively participate in global learning environments.

Requirements Effective Fall 2024

Titlo

Code	Title	Credits
Core Courses		
MSE 501	Materials Technology Transfer	1
MSE 502A	Materials Science and Engineering Methods: Materials Structure and Scattering	1
MSE 502B	Materials Science and Engineering Methods: Computational Materials Methods	1
MSE 503	Mechanical Behavior of Materials	3
MSE 504	Thermodynamics of Materials	3
MSE 793A	Professional Development Seminar: MSE, Diversity, Equity, and Inclusion	1
MSE 793B	Professional Development Seminar. Materials and Society	1
MSE 793C	Professional Development Seminar. Materials Science Engineering Careers	1
MSE 799	Dissertation ¹	6
Select at least one co	ourse from the following:	1
MSE 502C	Materials Science and Engineering Methods: Materials Microscopy	
MSE 502D	Materials Science and Engineering Methods: Materials Spectroscopy	
MSE 502E	Materials Science and Engineering Methods: Bulk Properties and Performance	
MSE 502F	Materials Science and Engineering Methods: Experimental Methods for Materials Research	
Select one course from the following:		3
CHEM 511	Solid State Chemistry	
CHEM 517	Chemistry of Electronic Materials	
ECE 574	Optical Properties in Solids (Select 1)	
PH 531	Introductory Condensed Matter Physics	

Specialty Courses

Select at least 6 credits: 2

6 credits: ²
Bioengineering
Seminar
Chemical Engineering Thermodynamics
Polymer Science and Engineering
Polymer Chemistry
Materials Chemistry: Hard Materials
3 Materials Chemistry: Soft Materials
2 Materials Chemistry: Nanomaterials
Crystallographic Computation
Chemical Crystallography
Surface Chemistry
Advanced Mechanics of Materials
Finite Element Method
Foundations of Solid Mechanics
Mechanics of Fatigue and Fracture
Nanostructures Fundamentals and Applications
Micro-Electro-Mechanical Devices
Thin Film Growth
Ethical Conduct of Research
Foundations of Applied Mathematics
Numerical Methods in Science and Engineering
Linear Algebra
Numerical Analysis I
Numerical Methods and Models I
Cell and Tissue Engineering
Advanced Composite Materials
Materials Engineering
Materials Issues in Mechanical Design
Structure and Function of Biomaterials
Applied Fracture Mechanics
Kinetics of Materials
Modern Topics in Condensed Matter Physics
Condensed Matter Theory
Teaching
ires a minimum of 72 credit hours, some of which
d with the following:
Special Topics in Materials Science
Independent Study
Supervised College Teaching
Independent Study

¹ Complete a minimum of 6 credits of MSE 799.

6

² CHEM 511, CHEM 517, ECE 574, and PH 531 can be used as specialty courses, if not used to fulfill core requirements.

Requirements for All Graduate Degrees

For more information, please visit Requirements for All Graduate Degrees (http://catalog.colostate.edu/general-catalog/graduate-bulletin/ graduate-study/procedures-requirements-all-degrees/) in the Graduate and Professional Bulletin (http://catalog.colostate.edu/general-catalog/ graduate-bulletin/).

Summary of Procedures for the Master's and Doctoral Degrees

NOTE: Each semester the Graduate School publishes a schedule of deadlines. Deadlines are available on the Graduate School website (https://graduateschool.colostate.edu/deadline-dates/). Students should consult this schedule whenever they approach important steps in their careers.

Forms (https://graduateschool.colostate.edu/forms/) are available online.

Step	Due Date
1. Application for admission (online)	Six months before first registration
2. Diagnostic examination when required	Before first registration
3. Appointment of advisor	Before first registration
4. Selection of graduate committee	Before the time of fourth regular semester registration
5. Filing of program of study (GS Form 6)	Before the time of fourth regular semester registration
6. Preliminary examination (Ph.D. and PD)	Two terms prior to final examination
7. Report of preliminary examination (GS Form 16) - (Ph.D. and PD)	Within two working days after results are known
8. Changes in committee (GS Form 9A)	When change is made
9. Application for Graduation (GS Form 25)	Refer to published deadlines from the Graduate School Website
9a. Reapplication for Graduation (online)	Failure to graduate requires Reapplication for Graduation (online) for the next time term for which you are applying
10. Submit thesis or dissertation to committee	At least two weeks prior to the examination or at the discretion of the graduate committee
11. Final examination	Refer to published deadlines from the Graduate School Website
12. Report of final examination (GS Form 24)	Within two working days after results are known; refer to published deadlines from the Graduate School website

A minimum of 72 credits are required to complete this program.

13. Submit a signed Thesis/ Dissertation Submission Form (GS Form 30) to the Graduate School and Submit the Survey of Earned Doctorates (Ph.D. only) prior to submitting the electronic thesis/ dissertation	Refer to published deadlines from the Graduate School website.
14. Submit the thesis/dissertation electronically	Refer to published deadlines from the Graduate School website
15. Graduation	Ceremony information is available from the Graduate School website