Data Science is the discovery of knowledge and insight through the analysis of data. As such, it draws on the study of algorithms and their implementation from computer science, the power of abstraction and of geometric and topological formalism from mathematics, and the modeling and analysis of data from statistics. It has emerged as a separate field in response to the avalanche of data from web enabled sensors and instrumentation, mobile devices, web logs and transactions, and the availability of computing power for data storage and analysis. Modern data is challenging not only due to its large scale, but also because it is increasingly heterogeneous and unstructured. Information gleaned from this data none-the-less is revolutionizing diverse areas of human endeavor from health policy to high energy physics.

Effective Fall 2022

Freshman
AUCCCredits
CO 150College Composition (GT-CO2)1A3
CS 163 or 164CS1---No Prior Programming Experience
CS1--Computational Thinking with Java
 4
CS 165CS2--Data Structures 4
DSCI 100First Year Seminar in Data Science 1
MATH 160Calculus for Physical Scientists I (GT-MA1)1B4
MATH 161Calculus for Physical Scientists II (GT-MA1)1B4
STAT 158Introduction to R Programming 1
STAT 315Intro to Theory and Practice of Statistics 3
Arts and Humanities3B3
Biological and Physical Sciences3A4
 Total Credits 31
Sophomore
 
CS 220Discrete Structures and their Applications 4
CS 253Software Development with C++ 4
CS 270Computer Organization 4
DSCI 235Data Wrangling 2
DSCI 369Linear Algebra for Data Science 4
MATH 151Mathematical Algorithms in Matlab I 1
MATH 261Calculus for Physical Scientists III 4
STAT 341Statistical Data Analysis I 3
STAT 342Statistical Data Analysis II 3
 Total Credits 29
Junior
 
DSCI 320Optimization Methods in Data Science 3
DSCI 335Inferential Reasoning in Data Analysis 3
DSCI 336Data Graphics and Visualization 1
Select one course from the following: 3
Algorithms--Theory and Practice  
Operating Systems  
Select one course from the following: 3
Writing Arguments (GT-CO3)2 
Writing in the Disciplines: Sciences (GT-CO3)2 
Writing in Digital Environments (GT-CO3)2 
Strategic Writing and Communication (GT-CO3)2 
Computer Science Electives (Select one course from the Computer Science Electives List below) 3-4
Data Science Electives (Select at least 6 credits from the Data Science Electives List below) 6-8
Arts and Humanities3B3
Biological and Physical Sciences3A3
 Total Credits 28-31
Senior
 
DSCI 445Statistical Machine Learning4B3
DSCI 478Capstone Group Project in Data Science4A,4C4
Computer Science Electives (Select two courses not taken in the junior year from the Computer Science Electives List below) 7-8
Diversity, Equity, and Inclusion1C3
Historical Perspectives3D3
Social and Behavioral Sciences3C3
Electives1 6-8
 Total Credits 29-32
 Program Total Credits: 120

Computer Science Electives List

Code Title AUCC Credits
Select three courses from the list below not taken elsewhere in the program:
CS 201/PHIL 201 Ethical Computing Systems (GT-AH3) 3B 3
CS 320 Algorithms--Theory and Practice 3
CS 345 Machine Learning Foundations and Practice 3
CS 370 Operating Systems 3
CS 420 Introduction to Analysis of Algorithms 4
CS 425 Introduction to Bioinformatics Algorithms 4
CS 430 Database Systems 4
CS 435 Introduction to Big Data 4
CS 440 Introduction to Artificial Intelligence 4
CS 445 Introduction to Machine Learning 4
CS 455 Introduction to Distributed Systems 4
CS 475 Parallel Programming 4

Data Science Electives List

Code Title AUCC Credits
DSCI 473 Introduction to Geometric Data Analysis 2
DSCI 475 Topological Data Analysis 2
ECON 202 Principles of Microeconomics (GT-SS1) 3C 3
ECON 204 Principles of Macroeconomics (GT-SS1) 3C 3
MATH 301 Introduction to Combinatorial Theory 3
MATH 317 Advanced Calculus of One Variable 3
MATH 331 Introduction to Mathematical Modeling 3
MATH 332 Partial Differential Equations 3
MATH 360 Mathematics of Information Security 3
MATH 450 Introduction to Numerical Analysis I 3
MATH 451 Introduction to Numerical Analysis II 3
MATH 460 Information and Coding Theory 3
STAT 400 Statistical Computing 3
STAT 420 Probability and Mathematical Statistics I 3
STAT 421 Introduction to Stochastic Processes 3
STAT 430 Probability and Mathematical Statistics II 3
STAT 440 Bayesian Data Analysis 3
STAT 460 Applied Multivariate Analysis 3
1

Select enough elective credits to bring the program total to a minimum of 120 credits, of which at least 42 must be upper-division (300- to 400-level). 

Freshman
Semester 1CriticalRecommendedAUCCCredits
CO 150College Composition (GT-CO2)  1A3
DSCI 100First Year Seminar in Data Science   1
MATH 160Calculus for Physical Scientists I (GT-MA1)  1B4
Select one course from the following:X  4
CS1---No Prior Programming Experience    
CS1--Computational Thinking with Java    
Arts and Humanities  3B3
 Total Credits   15
Semester 2CriticalRecommendedAUCCCredits
CS 165CS2--Data StructuresX  4
MATH 161Calculus for Physical Scientists II (GT-MA1)  1B4
STAT 158Introduction to R Programming   1
STAT 315Intro to Theory and Practice of Statistics   3
Biological and Physical Sciences  3A4
 Total Credits   16
Sophomore
Semester 3CriticalRecommendedAUCCCredits
CS 220Discrete Structures and their ApplicationsX  4
CS 270Computer OrganizationX  4
MATH 261Calculus for Physical Scientists III   4
STAT 341Statistical Data Analysis I   3
 Total Credits   15
Semester 4CriticalRecommendedAUCCCredits
CS 253Software Development with C++X  4
DSCI 235Data Wrangling   2
DSCI 369Linear Algebra for Data Science   4
MATH 151Mathematical Algorithms in Matlab I   1
STAT 342Statistical Data Analysis II   3
 Total Credits   14
Junior
Semester 5CriticalRecommendedAUCCCredits
DSCI 320Optimization Methods in Data Science   3
Select one course from the following:X  3
Algorithms--Theory and Practice    
Operating Systems    
Select one course from the following:   3
Writing Arguments (GT-CO3)  2 
Writing in the Disciplines: Sciences (GT-CO3)  2 
Writing in Digital Environments (GT-CO3)  2 
Strategic Writing and Communication (GT-CO3)  2 
Data Science Elective (See List on Concentration Requirements Tab)   3-4
Biological and Physical Sciences  3A3
 Total Credits   15-16
Semester 6CriticalRecommendedAUCCCredits
DSCI 335Inferential Reasoning in Data Analysis   3
DSCI 336Data Graphics and Visualization   1
Computer Science Elective (Select one course not previously taken from List on Concentration Requirements Tab)   3-4
Data Science Elective (See List on Concentration Requirements Tab)   3-4
Arts and Humanities  3B3
 Total Credits   13-15
Senior
Semester 7CriticalRecommendedAUCCCredits
DSCI 445Statistical Machine Learning  4B3
Computer Science Elective (Select course not previously taken from List on Concentration Requirements Tab)   3-4
Diversity, Equity, and Inclusion  1C3
Social and Behavioral Sciences  3C3
Elective   3-4
 Total Credits   15-17
Semester 8CriticalRecommendedAUCCCredits
DSCI 478Capstone Group Project in Data ScienceX 4A,4C4
Computer Science Elective (Select course not previously taken from List on Concentration Requirements Tab)X  4
Historical PerspectivesX 3D3
ElectiveX  3-4
The benchmark courses for the 8th semester are the remaining courses in the entire program of study.X   
 Total Credits   14-15
 Program Total Credits:   120