Materials Science and Engineering (MSE) research is aimed at educating and training the next generation of thinkers to solve the biggest global challenges.

By fostering a multidisciplinary approach, MSE degree programs strive to endow students with the tools to strategically question current design paradigms and drive innovative materials and manufacturing solutions across a diverse range of sectors. Motivated by modern materials challenges in energy, computing, transportation, impact protection, robotics, and global health care, MSE programs’ comprehensive, experiential training is designed to equip graduates with a modernized skill set tailored to confront those challenges head-on.

The MSE Ph.D. degree program is designed to engage students with:

  • Active hands-on training in the latest materials characterization and computational methods, materials-focused intellectual property protection and technology transfer, and professional soft skill development.
  • Enhanced educational opportunities promoted through industry partnerships, facilitating internships and class time spent in active commercial manufacturing labs.
  • A diverse core of faculty mentors driving advances in controlling structure at the nanoscale, predictive property modeling, high performance metal, polymer and ceramic composites, photovoltaics, and additive manufacturing.

The overall objective of the Ph.D. in Materials Science and Engineering is developing science and engineering professionals with multidisciplinary problem solving skills to address global challenges in the field of materials science and engineering.